摘要
为了解决由于拥堵指标和预测方法不完善而导致的预测精度不高的问题,从拥堵现象、拥堵原因、拥堵后果角度出发,构建终端区拥堵指标体系;建立BP神经网络并用粒子群算法提高模型精度,提出一种基于PSO-BP的多指标终端区拥堵等级预测模型;采用国内某终端管制区为实例验证了模型的有效性。结果表明,通过综合考虑终端区拥堵的影响因素,模型对终端区拥堵等级预测的准确率从66.7%提高到了80%,具有一定的实用价值。
-
单位华北理工大学; 建筑工程学院