摘要

为避免水轮发电机运行过程由于定子温度过高产生故障,保障其性能的正常发挥,建立了水轮发电机温度场分布模型,提出了一种温度预测方法。首先,以张河湾抽水蓄能电站的水轮发电机为基础,依据电磁场理论,对发电机在工况下电磁场和定子部分损耗进行分析,建立其三维有限元模型;其次,运用磁热耦合特性计算获得发电机定子温度场分布;再次,采用人工鱼群算法(AFSA)和BP神经网络算法相结合,构造定子绕组和定子顶部的温度预测模型;最后,将仿真结果和监控改造后的实测数据进行对比验证。结果表明,通过人工鱼群算法对BP神经网络优化,提高了定子温度预测模型的精度。本文给出了有限元仿真模型和AFSA-BP温度预测模型,为大功率水轮发电机定子温度故障分析以及电机的设计优化提供了参考。