摘要
针对B钢厂2 250 mm热轧生产线层流冷却系统卷取温度预报命中率低的问题,采用差分进化算法优化后的梯度提升决策树建立带钢卷取温度预测模型(DE-GBDT),并对DE-GBDT预测模型与3个基础预测模型(梯度提升决策树(GBDT)、支持向量机(SVM)、小波神经网络(WNN)预测模型)以及差分进化算法优化后的支持向量机(DE-SVM)、小波神经网络(DE-WNN)进行对比。实验结果显示DE-GBDT预测模型能为提高带钢卷取温度控制精度提供有力支持:(1)与DE-SVM、DE-WNN预测模型相比,DE-GBDT预测模型的各项误差指标均最小,其中均方误差为18.232。(2)DE-GBDT预测模型的各项误差指标明显小于3个基础预测模型,其中,与GBDT预测模型相比,DE-GBDT预测模型的预测命中率提高了2.9%,均方误差降低了40.294,说明差分进化算法能明显提升模型性能。
- 单位