摘要
根据冠层点云的分布特征,提出一种基于动态K阈值的叶片点云聚类及生长参数提取方法。首先,采用地面三维激光扫描仪获取多站点云数据并完成配准、去噪和抽稀等预处理;然后,随机截取整株点云中的一枝作为研究对象,融合局部凹凸性算法(LCCP)并改进K-means算法,提出基于动态K阈值的叶片点云聚类方法;最后,采用主成分分析方法(PCA)计算叶片点云法平面方向向量,并根据叶片边界点与中心点的位置关系,计算叶宽、叶长等生长参数。试验结果表明,与传统的点云聚类方法相比,本文方法能够在不损失枝干点云的前提下,精确地分割单叶片,保证了聚类结果的完整性和彻底性;与传统的降维方法相比,本文基于真实三维空间信息提取叶片生长参数能够较大程度提高提取准确性,为进一步评价果树冠层光照分布及果园智能化管理提供技术支持。
-
单位中国农业大学; 唐山学院