摘要
为了筛选出适用于开发苹果轻微损伤自动分级仪器的有效波段,以200个烟台富士苹果为对象进行研究。首先获取400~1 000 nm波长范围内完好和轻微损伤后0、0.5、1 h的苹果高光谱图像,然后提取完好与损伤样本感兴趣区域的平均光谱反射率数据,再利用载荷系数法(x-LW)、连续投影法(SPA)和二阶导数(second derivative)法提取特征波长,分别提取3、9和20个特征波长,并根据特征波长建立基于遗传算法优化的BP神经网络(GA-BP)和支持向量机(SVM)损伤识别模型。结果显示,三种基于特征波长提取方法建立的SVM模型对测试集的识别率(分别为77.50%、91.88%、96.88%)均高于BP-GA模型(分别为75.63%、90.63%、93.75%),因此,SVM被确定为最佳苹果轻微损伤识别模型。最后,利用每一特征波长分别作为变量建立SVM模型。结果发现,波段811 nm识别率达到90.63%,优于其他波段,被确定为苹果轻微损伤识别的最优波段。
- 单位