摘要
<正>笔者在《椭圆中由两垂直直线引出的“包络”》一文中得到这样一个结论:在平面直角坐标系中,圆的方程是x2+y2=r2(r>0),由点M(x0,y0)引两条相互垂直的动直线MP、MQ,这族直线PQ的包络线是一个椭圆,以原点O(0,0)和点M(x0,y0)为焦点,长轴长是槡2r2-x02-y02.在此基础上类比椭圆,提出过这样一个猜想:在平面直角坐标系中,椭圆的方程是■,由点M(x0,y0)■引两条相互垂直的动直线MP、MQ,与椭圆相交于P,Q两点,这族直线PQ的包络线是一个椭圆,其以M(x0,y0)和点■为焦点,长轴长是■.显然圆中的结论是椭圆的猜想的特殊情况,所以只需要证明椭圆中的猜想即可.这个猜想之所以难以证明,是因为所得的椭圆方程不是标准方程,由某个椭圆的标准方程变换得到也比较困难.再三探究,笔者翻看教材时,在椭圆的光学性质处得到启发,得以证明.整理成文与读者分享,不当之处期待方家的指正.