往复压缩机故障的残差网络诊断方法

作者:张利军; 段礼祥; 万夫; **; 刘香玉
来源:电子测量与仪器学报, 2021, 35(05): 38-46.
DOI:10.13382/j.jemi.B2003796

摘要

往复压缩机结构复杂、激励源众多,极易发生故障。由于故障特征设计困难,且多依靠经验,导致传统方法诊断能力不强。基于卷积神经网络(convolutional neural networks, CNN)的智能诊断方法无需提取特征,可实现端到端的故障诊断,但存在提取故障特征不准确、模型参数量大、训练时间长等难题。为此,提出基于PyTorch深度学习框架的往复压缩机故障诊断方法MPMRNet(multiple-processes-mini-ResNet)。该方法采用多进程加载数据,以残差网络ResNet50为基础网络框架进行深度和宽度的缩减,Adam优化网络、StepLR策略调整学习率,自动处理振动信号时频图像并进行敏感特征深度挖掘和评估。通过多组实验对比,该方法明显缩短了模型训练时间,权重参数量由94.1缩小到0.58 M,模型复杂度由4.11下降到0.21 G,显存占用率由37.08%下降到10.92%,故障诊断的准确率达到98.28%,模型的诊断能力得到了明显提高。