摘要

针对听觉诱发脑-机接口存在的“BCI盲”、泛化能力差等问题,设计基于听觉诱发的脑-机接口实验范式,提出了惩罚式长短期记忆神经网络融合全连接层的识别算法。首先,将实验采集到的脑电数据处理后作为神经网络的数据集输入,然后对长短期记忆神经网络中输出门的损失函数添加惩罚项,减少模型的参数,将其输出输入到DENSE层,解决模型训练过程中不易收敛的问题。实验表明,文中算法的识别率达到91.59%,解决了“BCI盲”的问题,有效解决了算法过拟合与不易收敛的问题。其分类性能不仅高于长短期记忆神经网络,而且相比一些其他代表性的算法也有一定优势。