摘要

滚动轴承在故障诊断过程中,存在着单一特征诊断准确率较低且无法充分表征故障信号所包含信息的问题。提出一种基于局部线性嵌入算法(Locally Linear Embedding, LLE)结合熵权法(the Entropy Weight Method, EWM)的多特征融合方法,结合引力搜索算法(Gravitational Search Algorithm, GSA)改进支持向量机(Support Vector Machine, SVM)实现滚动轴承的故障诊断。首先采用LLE-EWM对提取到的48维故障特征进行筛选融合,然后结合GSA-SVM模型对提取到的融合特征进行诊断,从而实现对滚动轴承变负载条件下的故障诊断。通过凯斯西储大学滚动轴承实测振动信号,对所提故障融合诊断方法的有效性进行验证。在特征筛选阈值设定为60%时,滚动轴承故障诊断的准确率达到99.7%。对比不同模型,所提方法具有最高的诊断准确率。试验结果表明,所提方法能够实现对故障信号特征信息的深度提取及提高故障诊断精度。