摘要

土壤可见光-近红外波段光谱(3502 500 nm)包含了大量的土壤属性信息,相同类型的土壤具有相似的光谱曲线特征,但相似光谱曲线是否具有相似的属性含量?探讨此问题可为土壤光谱库的应用提供依据,从而最终服务于快速获取土壤信息技术体系的构建。该研究以安徽宣城为研究区,根据母质、地形特征和土地利用等信息,采集91个典型土壤剖面,共含400个土壤发生层样品,测定了有机质(soil organic matter,SOM)和阳离子交换量(cation exchange capacity,CEC)含量,同时采用VARIAN公司的Cary 5000分光光度计测定了土壤光谱,并将光谱数据变换为反射率(R)、反射率一阶导数(FDR)和吸收度(Log(1/R))3种形式。该文采用光谱角(spectral angle mapper,SAM)、偏最小二乘回归(partial least square regression,PLSR)和SAM-PLSR(spectral angle mapper-partial least square regression,SAM-PLSR)3种方法预测土壤SOM和CEC。SAM方法是通过对测试集104个光谱曲线与参考集的296个光谱曲线进行相似性计算,并以此实现土壤SOM和CEC含量的预测。SAM-PLSR方法以SAM算法下的匹配结果作为建模样本建立PLSR模型和进行预测分析。结果表明,具有相似光谱曲线的土壤具有相似的SOM和CEC含量,SAM算法下相似光谱匹配可直接预测SOM(R2=0.78,RPD=2.17)和CEC(R2=0.82,RPD=2.41)。PLSR方法可很好地预测SOM(R2=0.87,RPD=2.77)和CEC(R2=0.87,RPD=2.59);相较之下,SAM-PLSR方法不仅可以更加准确预测SOM(R2=0.89,RPD=3.00)和CEC(R2=0.91,RPD=3.06),而且大大减少了建模样本的数量。该研究使可见光-近红外光谱可更加高效地用于土壤属性分析,并为土壤光谱数据库的建设及应用提供技术参考。