摘要
针对传统聚类算法在处理时空位置数据挖掘时面临的多维聚类问题,提出了动态加权聚类模型。该模型叠加利用经典k-均值和基于密度的DBSCAN聚类算法,通过计算最大轮廓系数确定合适的簇数目,按照划分初始簇类、识别和剔除噪声点、修正聚类簇中心点位置坐标3个步骤实现对大体量多维时空位置数据的聚类分析,提出了动态权重系数计算公式,优化了基于密度的DBSCAN聚类算法中相似度函数,并在Python3.7环境下以网络签到数据集实例仿真验算了该模型算法。实验结果表明,相较单一的传统聚类算法,该模型能综合利用多维非位置属性对时空位置数据点聚类,更合理界定聚类簇的归属数据点,对提升时空位置数据集聚类簇中数据点的聚类效果明显。
- 单位