摘要
目的 对山西省某三甲医院2011-2017年间血液科新诊断的弥漫大B细胞淋巴瘤患者(diffuse large B-cell lymphoma, DLBCL)是否实现两年无事件生存,即DLBLC患者早期复发的预测。方法 根据无事件生存期,将患者分成早期复发和非早期复发,并以此为标签构建分类模型。首先对数据进行了归一化处理,然后用LASSO进行了特征选择,因数据类别不平衡,分别采用了SMOTE(synthetic minority over-sampling technique)、Borderline-1 SMOTE、Borderline-2 SMOTE与ADASYN(adaptive synthetic sampling)四种方法平衡数据,之后构建了基于支持向量机的多核模型作为最终的分类器,并与AdaBoost、随机森林和以高斯核、多项式核为内核的单核支持向量机进行比较,最终实现对新诊断病例早期复发的预测。结果 在本文所有模型中,采用LASSO加Borderline-1 SMOTE的多核模型(accuracy=0.87,precision=0.87,recall=0.87,f1=0.87,AUC=0.87)取得了最优的分类性能。采用SMOTE的随机森林模型(accuracy=0.84,precision=0.85,recall=0.87,f1=0.79,AUC=0.83)、Borderline-2 SMOTE的随机森林(accuracy=0.84,precision=0.85,recall=0.87,f1=0.79,AUC=0.83)两种集成模型的分类性能也较好,但都低于多核支持向量机模型。两种单核支持向量机性能较差。结论 本文构建的所有模型中,经过LASSO和Borderline-1 SMOTE重采样的多核支持向量机性能最优,可为DLBCL早期复发预测提供参考。
-
单位公共卫生学院; 山西医科大学; 山西省肿瘤医院