摘要
针对海面运动的复杂性、海面电磁散射理论模型的局限性以及利用SAR图像反演海面风速存在的非线性现象,基于遗传神经网络的方法,以业务化的CMOD4模式函数数据为基础,采用Fletcher-Reeves算法的变梯度反向传播算法,建立一种SAR风速反演的新模型。试验结果表明,利用遗传神经网络方法反演海面风速是可行的,当随机误差小于10%时,模型的抗噪能力较强,风速反演的精度较为理想。比较不同风速下的反演结果可以发现,在中、小风速的情况下,模型的抗噪能力较强,模型学习拟合和预测检验的精度相对较高;在大风速的情况下,模型的反演能力有待于进一步提高。
-
单位解放军理工大学