摘要
针对传统单标签特征选择算法不能直接应用于多标签数据的问题,提出一种多标签特征选择算法——MMLRF算法.在ReliefF的基础上,MML-RF算法提出新的类内最近邻样本查找方式,并结合多标签的贡献值改进特征权值的计算方法,能很好地适应多标签数据的特点;同时为了减少特征冗余,MML-RF算法以互信息作为特征冗余度量方式,提出一种去冗余方法,能够得到更小的特征子集.实验表明,MML-RF多标签特征选择算法得到的特征子集规模较小,且在多标签数据集上具有很好的分类效果,能够提升多标签学习和数据挖掘工作的效率.
- 单位