摘要
为了解决卷积神经网络对内存和时间效率要求越来越高的问题,提出一种面向数字图像分类的新模型,该模型为基于强纠缠参数化线路的量子卷积神经网络。首先对经典图像进行预处理和量子比特编码,提取图像的特征信息,并将其制备为量子态作为量子卷积神经网络模型的输入。通过设计模型量子卷积层、量子池化层、量子全连接层结构,高效提炼主要特征信息,最后对模型输出执行Z基测量,根据期望值完成图像分类。实验数据集为MNIST数据,{0,1}分类和{2,7}分类准确率均达到了100%。对比结果表明,采用平均池化下采样的三层网络结构的QCNN模型具有更高的测试精度。
- 单位