摘要
模糊C-均值聚类算法(FCM)是一种经典的聚类算法,主要通过迭代更新隶属度和聚类中心来提高聚类的有效性。FCM算法的性能主要通过类内紧性和类间分离性来评价,但其既依赖于初始聚类中心,也对噪声非常敏感。考虑到每个数据点和每个聚类中心对目标函数的不同重要性,本文提出了一种具有自适应权重的改进FCM聚类算法(Hybrid FCM)。主要贡献:将2个具有自适应指数p和q的自适应权向量ψ和φ引入FCM的目标函数,以体现不同数据点和聚类中心的重要性;为提高聚类性能,自适应指数p、q和模糊因子m采用粒子群优化算法(PSO)优化,新提出的聚类评价指标AWCVI作为PSO算法的适应度函数;迭代过程中利用余弦相似性对隶属度函数进行修正,提高算法的鲁棒性。实验表明,本文提出的算法能够有效地提高聚类效果。
- 单位