提出一种迁移学习与深度学习相结合的钢板裂纹缺陷检测方法。首先,通过非负矩阵分解(NMF)建立红外缺陷数据集的目标域特征空间,以余弦相似度为衡量指标选取可见光缺陷数据集的源域样本,对深度学习模型进行预训练,并将模型权重参数迁移至目标域,实现相似领域的知识迁移;然后,在YOLO v5算法基础上引入自适应空间特征融合(ASFF)模块,提高缺陷检测精度。实验结果表明:所提方法对钢板脉冲涡流热成像裂纹缺陷的检测精度达到98.6%,可实现不同长度裂纹的准确识别与定位。