摘要

变压器油是电力变压器中的主要绝缘物质之一,油的密度指标与变压器的安全运行息息相关。文中基于多频超声波、遗传算法-反向传播神经网络(GA-BPNN)的原理,对变压器油密度进行了预测研究。以电网公司110组变压器油为例,其中100组为训练集,10组为预测集。建立了基于BPNN的变压器油密度预测模型,并将242维多频超声数据作为输入,密度作为输出。通过试验法确定了BPNN的隐层神经元个数,由此建立非线性映射关系,并用遗传算法优化BPNN的各层连接权值及阈值。结果表明,与传统的标准BPNN模型相比,GA-BPNN模型的变压器油密度值与实际值拟合度更高,误差更小。研究结果为检测变压器油的其他参数提供了可靠的依据。