行人检测旨在从给定的场景中精确定位出每一个属于检测范围的人,在过去几十年中取得了重大的进展。它与行人重识别和行人跟踪技术相结合,在自动驾驶、人机交互、智能视频监控和人物对象行为分析等领域有着重要应用。研究了深度学习技术在行人检测领域的研究进展,就行人检测目前面临的主要问题和挑战进行了分析;调查总结了行人检测的数据集和评价标准,归纳分析了影响行人检测的关键子问题,例如网络架构、损失函数、特征表达、上下文信息和训练策略等。为该领域前沿综合研究提供参考和依据。