摘要

三文鱼是一种营养丰富且味道鲜美的海水鱼种,近年来,我国三文鱼消费市场需求旺盛,进口量不断增加,而进口方式主要包括冰鲜和冷冻两种。相比于冷冻三文鱼,冰鲜三文鱼能更好的保留其优良品质,但同时成本更高,售价更贵。因此存在部分不法商贩将冷冻三文鱼解冻后作为冰鲜三文鱼售卖,以此谋取更多利润。这种欺诈行为不仅严重损害了消费者的利益,也不利于我国三文鱼消费市场的健康发展。为建立一种快速、无损的三文鱼品质检测方法,以冰鲜和冻融三文鱼为研究对象,对冰鲜和冻融三文鱼的高光谱光谱差异和图像差异进行了分析,并结合化学计量学方法对冰鲜和冻融三文鱼进行快速鉴别。三文鱼在冷冻运输过程中,受冷链条件等因素的影响,可能存在多次冻融的情况。因此为提高检测方法的通用性,制备不同冻融次数的三文鱼作为冻融组。首先通过高光谱成像系统采集样本的高光谱图像数据。然后利用ENVI 4.5软件提取样本高光谱图像中感兴趣区域(ROI)的平均光谱,同时利用灰度共生矩阵法(GLCM)对前三个主成分图像的纹理信息进行提取。原始光谱信息经过多元散射校正(MSC)等方法预处理后,利用主成分分析法(PCA)、竞争性自适应重加权算法(CARS)、连续投影算法(SPA)和CARS-SPA对光谱进行降维和变量筛选。最后基于光谱信息、图像信息以及融合光谱-图像信息分别结合反向传播神经网络(BPANN)、线性判别分析(LDA)、极限学习机(ELM)和随机森林(RF)建立冰鲜与冻融三文鱼鉴别模型。结果显示基于MSC预处理光谱的CARS-ELM模型对冰鲜与冻融三文鱼识别效果最佳,其校正集和预测集的识别率分别为100.00%和95.00%。此外,在对三文鱼的冻融次数鉴别研究中,基于MSC预处理光谱建立的CARS-ELM模型对三文鱼冻融次数识别效果最佳,其校正集和预测集的识别率分别为97.50%和91.67%。研究结果表明,基于高光谱成像技术能够对冰鲜与冻融三文鱼进行快速鉴别。