摘要

为了提取高光谱图像中的深度鉴别特征,往往需要大量标记样本,但是高光谱图像样本标定困难,基于高光谱图像的“图谱合一”特性提出一种基于深度-流形学习的半监督双流网络。该网络用卷积网络和神经网络分别提取少量标记样本以及大量无标记样本中的空-谱联合特征,然后分别构建基于监督图和非监督图的流形重构图模型,以挖掘其中的本征流形结构。在此基础上设计了基于均方误差和流形学习的联合损失函数,以协同度量流形边界和空-谱概率残差,实现双流网络的一体化反馈和优化,进而实现地物分类。在WHU-Hi龙口和黑河高光谱数据集上实验的总体分类精度分别达到97.53%和96.79%,有效提升了地物分类能力。