摘要

销钉类缺陷常见于输电线路无人机巡检图像中,因图像占比小、缺陷特征不明显等原因,其检测精度低于其他类缺陷。针对该问题,采用基于区域的全卷积神经网络(region-based fully convonlutional networks, R-FCN)算法建立目标检测网络,分析混淆矩阵,确定算法改进策略。首先,通过网格化拆分实现高清晰度图像的预处理;其次,构建类别平衡的大间隔Softmax损失函数,平衡样本数量,增大类间方差,改善网络检测精度;最后,通过类激活映射的方法生成金具级类激活图,提取螺栓背景信息,实现2类易混淆螺栓的细粒度分类。在无人机巡检图像数据集中进行测试,比较所提改进算法与其他经典算法的检测结果,验证了改进R-FCN算法对销钉类缺陷的检测能力。

  • 单位
    台州供电公司