摘要

针对全波形反演问题的不适定性,本文将基于块的稀疏字典学习、图的拉普拉斯矩阵应用于全波形反演(Full Waveform Inversion, FWI)问题,提出了一种新的FWI算法—基于字典学习和图拉普拉斯正则化的全波形反演方法.利用奇异值分解从图像块中学习出具有自适应性的稀疏变换字典,在稀疏表示降噪模型的基础上,引入图拉普拉斯正则化项,同时考虑局部图像块的稀疏性和非局部图像块间的相似性.数值试验结果表明,与基于曲波变换的稀疏约束正则化波形反演算法相比,本文算法能够提供视觉上更清晰的反演结果,能够保留介质参数中更多的细节特征,且在峰值信噪比、结构相似性和均方根误差等定量指标上,都有明显地改善.