摘要
现有迁移学习研究大多数都建立在源领域和目标领域的相似度较高的全局约束下,对如何选择合适的源领域缺乏研究。为了确定如何自适应地从候选源领域集合中选择合适源领域,提升迁移效率,避免"负迁移"现象,基于最大均值差异(maximum mean discrepancy,MMD)提出一种叫作域间相似度序数(MMD-SR)的度量方法,用于度量候选源领域与目标领域间的相似度。同时,基于MMD-SR,提出一种迁移学习源域自适应选择策略(MMD-SR source domain selection strategy,MMD-SRSDSS)。在人工数据集和真实数据集中的实验结果表明了度量方法MMD-SR和源领域选择策略MMD-SRSDSS的有效性和可行性。
-
单位华南理工大学; 数学学院