摘要

针对在特征选择中选取特征较多时造成的去冗余过程很复杂的问题,以及一些特征需与其他特征组合后才会与标签有较强相关度的问题,提出了一种基于互信息的多级特征选择算法(MIMLFS)。首先,根据特征与标签的相关度,将特征分为强相关、次强相关和其他特征;其次,选取强相关特征后,在次强相关特征中,选取冗余度较低的特征;最后,选取能增强已选特征集合与标签相关度的特征。在15组数据集上,将MIMLFS与ReliefF、最大相关最小冗余(mRMR)算法、基于联合互信息(JMI)算法、条件互信息最大化准则(CMIM)算法和双输入对称关联(DISR)算法进行对比实验,结果表明MIMLFS在支持向量机(SVM)和分类回归树(CART)分类器上分别有13组和11组数据集获得了最高的分类准确率。相较多种经典特征选择方法,MIMLFS算法有更好的分类性能。

  • 单位
    闽南师范大学