基于用户偏好优化模型的推荐算法研究

作者:邱宁佳; 何壮; 王鹏*; 李岩芳
来源:计算机应用研究, 2019, 36(12): 3579-3609.
DOI:10.19734/j.issn.1001-3695.2018.07.0433

摘要

传统的个性化推荐算法普遍存在数据稀疏性问题,影响了推荐的准确度。Slope One算法具有简单、高效等特点,但该算法只是根据用户—项目评分矩阵进行数据分析,对所有用户采用一致性的权重进行计算,忽视了用户对项目类型的喜好程度。针对上述问题进行了研究,提出LR-Slope One算法。首先根据用户—项目评分矩阵和项目类型信息构建用户对项目类型的偏好矩阵;然后利用线性回归模型计算用户对每个类型的权重,采用随机梯度下降算法优化权重;最后结合Slope One算法预测评分,填充评分矩阵,提高推荐的质量。实验结果表明,所提算法提高了推荐的精度,有效缓解了稀疏性问题。

全文