随着经济的快速发展,信用贷款在企业资金周转中的作用越来越重要.信用评级是信用贷款发放的基本依据之一.本文针对实际信用评级中有标签样本数量不足的问题,提出一种基于Tri-training算法的多分类信用评级方法,该方法选择支持向量机、决策树和最大熵模型作为基分类器组合.最后,本文使用真实的信用数据集验证了该方法的实际效果.