提出了一种在动态网络中发现社团结构的增量式聚类算法.基于动态网络中相邻采样时刻网络拓扑变化较小的特点,将网络前一时刻的社团结构作为当前时刻的初始聚类结果,利用边的桥系数判断网络拓扑变化对聚类结果的影响,局部调整初始聚类,最终得到符合当前网络拓扑的社团结构.通过和马尔可夫聚类算法进行比较,验证了本算法的精确性和高效性.实验结果表明,利用增量聚类算法分析动态网络,避免了对当前网络的重新聚类,可以快速、准确地发现动态网络社团结构.