摘要
现有复杂产品装配制造成熟度等级评估依赖专家凭经验确定指标权重和指标评分,存在主观性较强、工作量大、耗时长、无法传承评价实例所蕴含的知识等问题。为了提高复杂产品装配制造成熟度等级评估的效率以及客观性,利用成熟度等级评价实例数据,研究基于BP人工神经网络和AdaBoost算法的制造成熟度等级评估方法。构建复杂产品装配制造成熟度评价指标体系,给出基于模糊评价法和隶属函数的评价指标及成熟度等级达成度量化方法,建立基于BP神经网络的复杂产品装配制造成熟度等级评估模型,并使用AdaBoost算法优化成熟度等级评估BP神经网络模型。采用复杂产品分系统装配制造成熟度评价数据集对评估模型进行训练和实验,分析BP-AdaBoost的评估结果,获得最优评价模型。实验结果表明,基于BP-AdaBoost算法的复杂产品装配制造成熟度等级评估方法具有较好的可靠性与准确度。
-
单位南京晨光集团有限责任公司; 南京航空航天大学