摘要

针对目前通过超分辨率技术重建后图像的质量不高、纹理细节模糊、网络训练不稳定等问题,提出一种基于改进生成对抗网络的单图超分辨率重建算法。该算法以生成对抗网络为基础,采用多尺度卷积层和GELU(Gaussian Error Linear Units)激活函数对生成网络中的残差块进行优化,提高网络泛化能力;利用Wasserstein距离和Huber损失对损失函数进行优化,增强网络训练的稳定性;减少判别网络中的批规范化层,优化网络结构。实验结果表明:在Set5等数据集上,该算法重建后的图像在客观评价指标和主观视觉效果上均优于其他经典算法。