摘要

针对SSD算法各特征层关系未充分利用导致浅层特征层缺乏语义信息的问题,为提高对小目标的检测能力,提出一种自深向浅特征融合的小目标检测方法DTS-SSD(Deep to Shallow SSD)。使用BiFPN特征融合模块对特征多次提取获得多尺度语义信息;利用深层特征融合模块减少深层特征层缺失的小目标空间位置信息;构建1条自深向浅的特征融合路径来增强浅层特征层的语义信息;应用注意力机制学习特征图通道间的重要性。通过在PASCAL VOC2007测试集进行实验验证,mAP(Mean Average Precision)值达到80.1%,对目标的mAP较原SSD算法提高2.9%,该算法可行有效。