摘要

切削过程恒力控制对于提高生产率、保证加工精度具有重要作用。文章以车削加工过程为对象,研究恒切削力加工过程中当切削深度发生突变时,如何减少系统输出切削力超调的问题。将预测控制策略与神经网络理论相结合,在神经网络学习时,使切削进给在切削深度发生突变前提前发生相应变化,提出了恒力切削过程的神经网络预测控制算法。仿真结果表明,与传统自适应神经网络控制相比,加工过程的神经网络预测控制能够有效的解决在背吃刀量发生突变时,加工系统输出的切削力过大的问题,显示出比加工过程传统神经网络自适应控制更好的综合性能。

全文