摘要
自动调制识别是认知无线电、电子侦察、电磁态势生成中重要的环节.由于电磁环境日益复杂,噪声对能否正确调制识别影响显著.本文针对低信噪比(signal-noise ratio,SNR)环境条件设计了一种基于软阈值的深度学习模型,在卷积神经网络(convolutional neural networks, CNN)的基础上加入软阈值函数.将IQ数据转化为幅度相位信息作为模型的输入,CNN用于提取幅度相位数据中的特征,软阈值学习网络可以针对不同特征设置不同阈值,用于滤除样本噪声,提高低SNR条件下的识别率.在开源数据集RML2016.10a上验证了所提算法的有效性,对比其他网络结构,本文提出的模型识别率更高且效率更高.
-
单位中国人民解放军陆军工程大学