摘要
<正>求二次函数平移和对称后的解析式是中考热点问题.对于二次函数平移,我们熟知,先将抛物线通过配方化成顶点式y=a(xh)2+k(a≠0),再根据平移规律:左加右减,上加下减,可求得其解析式.显然抛物线无论作何种对称变换,其形状没有发生变化,即|a|不变.因此要求抛物线经过对称变换后的解析式,我们可先确定原抛物线的顶点坐标及开口方向,再根据两抛物线顶点对称的规律,来确定二次函数的三个参数a,h,k变化规律;我们还可以根据坐标对称的特征,归纳出二次函数的一般式y=ax2+bx+c(a≠0)对称后的解析式及a,b,c的变化规律.现分类阐释抛物线经不同对称变换后的解析式的变化规律,供大家参考.