摘要
为解决现阶段基于深度学习网络的信号识别技术无法实现未知信号增量识别的问题,提出了基于多流ConvNeXt网络和马氏距离度量(MDM)相结合的未知信号增量识别方法.首先,利用改进的多流ConvNeXt网络提取信号的属性特征;其次,使用马氏距离度量判决方法进行未知信号检测进而实现已知信号和未知信号的二分类;最后,该方法根据不断增加的未知信号对模型的参数进行自动更新,使模型具备了自我进化的能力,进而可以识别出不断增加的新的未知信号类别,实现对未知信号的增量识别.仿真实验结果表明,该方法对未知信号的平均识别率达到97%以上.
-
单位工业和信息化部; 上海无线电设备研究所; 哈尔滨工程大学