摘要
针对车载激光雷达(LiDAR)数据中杆状地物分类效果不理想的问题,该文对从车载LiDAR数据中提取的杆状地物进行形态分析与分类研究。首先,利用基于体素的方法对杆状地物进行提取。其次,对提取出的杆状地物进行形态分析,使用ESF特征、几何特征及附属物拓扑特征作为杆状地物的特征向量集。最后,利用随机森林分类器对特征向量集进行重要性分析,构建最优特征子集,对杆状地物进行精细分类。该文在3个数据集上进行试验以验证方法的有效性。结果表明,该文方法对杆状地物有较好的分类效果,准确率分别为91.8%、89.23%和88.51%。
- 单位