基于深度特征与抗遮挡策略的运动目标跟踪

作者:火元莲; 李明; 曹鹏飞; 石明
来源:西北师范大学学报(自然科学版), 2020, 56(04): 49-56.
DOI:10.16783/j.cnki.nwnuz.2020.04.008

摘要

为了进一步提高复杂场景下的目标跟踪精度与鲁棒性,本文提出了基于深度特征与抗遮挡策略的运动目标跟踪算法,首先利用深层卷积神经网络提取出目标的深度卷积特征以代替传统的手工特征,然后将深度卷积特征融入传统的核相关滤波跟踪框架,充分利用深度特征描述能力强和相关滤波算法跟踪效率高的优势,同时采用高置信度抗遮挡更新策略来更新滤波器,利用融合特征训练尺度相关滤波器,以便更加精准预测目标的位置,提高算法抗遮挡能力.论文对数据集OTB-100视频序列中有遮挡问题的序列进行了测试,并与Deep STRCF、DSST、SRDCF、COT和ECO等算法进行比较,实验结果表明,本文所提算法在目标尺度变化、背景干扰和遮挡等复杂背景下具有更高的跟踪精度与成功率,跟踪效果最佳.

全文