基于小波包-GABP的滚动轴承故障诊断分析

作者:张晴; 高军伟; 张彬; 毛云龙; 董宏辉
来源:青岛大学学报(工程技术版), 2017, 32(02): 28-45.
DOI:10.13306/j.1006-9798.2017.02.006

摘要

为提高诊断滚动轴承故障的效率和准确率,本文将小波包变换、BP神经网络和遗传算法三者相结合,提出了一种基于小波包和GABP神经网络的故障诊断模型。由小波包的分解与重构在滚动轴承故障原始信号中提取有效的故障特征向量,并利用遗传算法优化BP神经网络,然后训练和诊断滚动轴承信号的故障类型。同时,运用Matlab软件把采集的数据进行仿真分析。仿真结果表明,相对于传统BP神经网络,利用遗传算法优化的神经网络对故障的诊断正确率更高,并且收敛速度较快,说明由遗传算法优化的BP神经网络在故障诊断方面具有较好的效果,而且遗传算法的引入使轴承故障诊断的适应度和准确率更高。该研究为滚动轴承的故障诊断提供了理论基础。

全文