汽车轮毂在加工和搬运过程中难免会产生划痕和擦伤等表面缺陷,为解决传统人工检测低效、耗时、检测精度低的缺点,提出使用机器视觉技术完成轮毂表面缺陷的检测。由于轮毂的表面结构复杂,提出将视觉系统安装在机械手末端完成图像采集,并以此提出了一种基于深度学习的汽车轮毂表面缺陷检测算法,该算法首先对采集的原始图片进行分割,然后对分割的图片进行图像增强处理,增强图像的对比度和缺陷的特征,然后将处理后的图片输入已经训练好的卷积神经网络,得出最终的检测结果。实验结果表明,该算法具有很高的准确率。