摘要

针对湖面气象观测站部署困难导致降水观测资料不足以及传统数值模式面雨量计算复杂等问题,本文以巢湖为研究对象,利用巢湖流域内雷达三维拼图数据和气象观测站降水数据,制作模型数据集。构建基于集成学习的雷达降水估测(Quantitative Precipitation Estimation,QPE)模型,利用自制数据集对模型进行训练,并结合地理信息系统(GIS),将巢湖区域按经纬度网格划分并与雷达拼图在空间上进行叠加,根据QPE模型计算各网格点降雨量,对网格点降雨量求算术平均得到湖面面雨量。实验分析基于随机森林(Random Forest,RF)、XGBoost、LightGBM这3种集成学习的QPE模型性能,选取性能较优QPE模型并进行超参数调优;对比分析利用网格点平均法和气象陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)得到的湖面面雨量结果。结果表明,使用RF算法的QPE模型性能较优,采用网格点平均法和CLDAS计算结果数值虽有差异,但总体趋势一致。该方法可用于巢湖面雨量的计算,为巢湖及其流域防汛抗洪提供重要参考。