摘要

信息过载是当前各类网络中存在的普遍问题,社交网络中通过推荐算法为用户推荐感兴趣的内容,但该类算法并不适用于学习网络中存在特定逻辑联系的知识点推荐。结合社交网络及LBSN网络中的兴趣点推荐算法,提出了一种面向学习网络相关知识点的改进LBSN推荐算法,通过学习网络中的相似用户计算及知识路径发现,为用户推荐当前学习相关的近邻知识点,并通过实验数据证明了学习网络中加入学习推荐对学习者效率及学习质量提升的效果。