<正>例1已知1/x+1/(y+z)=1/2,1/y+1/(z+x)=1/3,1/z+1/(x+y)=1/4,则2/x+3/y+4/z的值为解已知三等式左边通分,得(x+y+z)/(xy+xz)=1/2,(x+y+z)/(yz+xy)=1/3,(x+y+z)/(yz+xz)=1/4,取倒数,得(xy+xz)/(x+y+z)=2,(yz+xy)/(x+y+z)=3,(yz+xz)/(x+y+z)=4,以上三等式两边分别相加,得