摘要
针对目前无人机航迹规划成本高、精度差和稳定性不足等问题,提出一种精英引领自适应樽海鞘群算法。首先,分别引入精英质心对立学习和精英引导惯性权重机制对樽海鞘领导者和跟随者更新方式进行改进,提升樽海鞘群算法的全局搜索能力和收敛速度,并设计种群个体角色自适应调整机制均衡算法的全局搜索和局部开发;然后建立无人机二维航迹空间模型和航迹成本模型,将航迹规划转换为多维函数优化问题,并利用精英引领自适应樽海鞘群算法求解无人机航迹规划问题,以综合考虑威胁成本和燃料成本的航迹目标函数评估个体位置适应度,对航迹规划最优方案迭代求解。在两个不同复杂性的威胁场景下进行的仿真实验结果表明,与人工势场(APF)、樽海鞘群算法(SSA)、人工蜂群算法(ABA)和改进樽海鞘群算法(ISSA)相比,所提算法的最优航迹平均成本分别可以降低78.68%、61.77%、42.76%和19.36%,验证了所提算法的有效性。
-
单位忻州师范学院