摘要

为实时监测复杂工业过程的故障状态,精确预测故障趋势,提出基于降噪自编码和时间卷积网络的故障预测方法。首先,利用随机森林算法筛选故障相关特征。之后,利用堆栈降噪自编码网络提取非线性特征以及特征重构,并根据重构误差构造平方预测误差(SPE)统计量作为故障状态特征。最后,针对时间卷积网络残差模块中的ReLU激活函数在负区间内导数为零导致部分神经元无法被激活的问题,设计基于自门控激活函数(Swish)和滤波器响应(FRN)规范化的时间卷积网络(SFTCN)。将得到的SPE组成时间序列,利用SFTCN的预测模型实现其状态趋势预测。通过在TE仿真平台数据和美国密歇根大学智能维修中心实测的轴承全生命数据上的实验表明,与未改进的时间卷积网络对比,所提方法的预测平均绝对百分比误差至少降低20.9%,具有较高的应用价值。

全文