摘要

本文介绍了一种新的基于YOLOv5s的目标检测方法,旨在弥补当前主流检测方法在小目标安全帽佩戴检测方面的不足,提高检测精度和避免漏检.首先增加了一个小目标检测层,增加对小目标安全帽的检测精度;其次引入ShuffleAttention注意力机制,本文将ShuffleAttention的分组数由原来的64组减少为16组,更加有利于模型对深浅、大小特征的全局提取;最后增加SA-BiFPN网络结构,进行双向的多尺度特征融合,提取更加有效的特征信息.实验表明,和原YOLOv5s算法相比,改善后的算法平均精确率提升了1.7%,达到了92.5%,其中佩戴安全帽和未佩戴安全帽的平均精度分别提升了1.9%和1.4%.本文与其他目标检测算法进行对比测试,实验结果表明SAB-YOLOv5s算法模型仅比原始YOLOv5s算法模型增大了1.5M,小于其他算法模型,提高了目标检测的平均精度,减少了小目标检测中漏检、误检的情况,实现了准确且轻量级的安全帽佩戴检测.

全文