在群居蜘蛛优化算法中引入自适应决策半径,将蜘蛛种群动态地分成多个种群,种群内适应度不同的个体采取不同的更新方式.在筛选全局极值的基础上,根据进化程度执行回溯迭代更新,提出一种自适应多种群回溯群居蜘蛛优化算法,旨在提高种群样本多样性和算法全局寻优能力.函数寻优结果表明改进算法具有较快的收敛速度和较高的收敛精度.最后将其应用于TSP问题的求解.