摘要

设q=2s.s,n为正整数,Fqn为qn元素的有限域.在本文中,我们考虑Fqn中一些特殊元素的存在性.主要结果是:当下面的条件之一成立时,在Fqn中存在ξ使得ξ和ξ+ξ-1都是本原元并且ξ+ξ-1还是一个正规元:1.当n|(q-1)时,n37,s>6,或者2.当n|■(q-1)时,n≥34,s>6.进一步,如果n是奇数,则当下列条件之一成立时,存在ξ∈Fqn使得ξ和ξ+ξ-1都是Fqn的本原正规元:1.当n|(q-1)时,n≥257,s>9,或者2.当n■(q-1)时,n≥43,s≥9.