摘要

差分进化算法(DE)是一种简单有效的启发式全局搜索技术,为解决DE算法运行过程中存在的算法收敛早熟、收敛速度慢和求解精度不高等问题,提出了一种基于退火加速的差分进化算法.该方法在传统DE算法基础上,以退火概率来增强算法的局部开发能力,并利用Hooke-Jeeves算法加快收敛速度,在充分发挥Hooke-Jeeves算法局部探测能力的同时保持了DE算法的全局性能.仿真结果表明,该算法比基本DE算法收敛速度快、精度高,是一种有效的全局优化算法.