摘要

协同推荐的基本思想是相似的用户往往具有相似的用户偏好,现有的个性化协同推荐算法在情景相似的前提下进行协同推荐,无法动态地适应情景变化。针对这个问题,提出一种适应情景变化的协同推荐算法。引入用户情景效用的概念,并给出了计算情景效用的有效方法,对每个具体用户,计算其对情景的效用,在经典算法的基础上,根据当前情景与历史情景的效用调整对用户的预测值,算法不用进行前置过滤,用户数据利用率更高;对每个用户计算情景效用,对用户的针对性更强;能根据情景动态调整预测值。实验表明:算法能动态适应情景变化,并提高了个性化推荐算法的推荐质量。

全文