摘要

针对传统群目标跟踪算法在点群共存场景下跟踪精度低的问题,提出了可以同时对点目标和群目标进行跟踪的轨迹泊松多伯努利混合滤波(TPMBM)算法。该算法对目标的状态空间进行扩展,在标准点目标和群目标模型的基础上引入关于目标类别的概率信息,通过TPMBM滤波器的预测和更新过程实现对目标类别的判断和对目标运动状态的估计。仿真结果表明,与现有算法相比,所提算法在点目标和群目标共存时漏检误差明显降低,具有更优的跟踪性能。